お知らせ
博士後期課程の白木優馬が博士号取得
2018年3月26日に名古屋大学の卒業式が行われ、五十嵐研究室では博士後期課程の白木優馬が博士(心理学)を取得しました。

白木さんの今後のご活躍をお祈りしています。
この記事へのリンク | 2018-3-30
五十嵐研究室2017年度の業績一覧を公開しました
2017年度の五十嵐研究室の業績は以下の通りです。
論文(査読有)
Shiraki, Y., & Igarashi, T. (2018). “Paying it forward” via satisfying basic human need: Need for Relatedness satisfaction mediates gratitude and prosocial behavior. Asian Journal of Social Psychology. doi: 10.1111/ajsp.12211 [PDF]
佐藤有紀・五十嵐祐 (2017). 制御焦点と向社会性:囚人のジレンマ課題を用いた検討 社会心理学研究, 33, 93-100. doi: 10.14966/jssp.0947 [PDF]
白木優馬 (2016). 制御焦点が間接互恵行為に与える影響 -価値・コストの認知的評価の弁別に着目した検討- 対人社会心理学研究, 16, 1-6. doi: 10.18910/67189 [PDF]
白木優馬 (印刷中). 実るほど稲穂は首を垂れるか?―地位と感謝の関連における矛盾の解消― 東海心理学研究 [PDF]
学会発表(国際学会)
Furuhashi, K. & Igarashi, T. (2018, Mar.). In what group and feeling, can we help others? Altruistic behavior under mortality salience. Paper Presented at the 19th Annual Meeting of the Society for Personality and Social Psychology, Atlanta, GA.
Igarashi, T, Kato, J, Shiraki, Y, Hirashima, T, & Tamai, R (2017, Nov.). Chasing stars and confirming alliance: Two effective strategies for learning social network structure. Oral Presented at the 2nd Australian Social Network Analysis Conference, Sydney, Australia.
Kuwahara, K., Shiraki, Y., & Igarashi, T. (2017, April). “When” are you from? The effect of temporal distance to the recipient in the dictator game. Society of Australian Social Psychologists, Melbourne, Australia.
Shiraki, Y., Tong, E. M. W., & Igarashi, T. (2018, Mar.). Grasping Connections by Way of Appreciation: Gratitude and Accuracy of Social Network Perception. Paper Presented at the 19th Annual Meeting of the Society for Personality and Social Psychology, Atlanta, GA.
学会発表(国内学会)
古橋健悟・五十嵐祐 (2017). Mortality salience and altruistic egoism in groups: Focusing on social identity and group permeability. 日本社会心理学会第58回大会(広島大学)
平島太郎・五十嵐祐 (2017). Seeking a sense of power or security from personal communities: Motivational basis of community affiliation. 日本社会心理学会第58回大会(広島大学)
五十嵐祐・平島太郎 (2017). Generalized trust and generalized social selection processes in social networks. 日本社会心理学会第58回大会(広島大学)
加藤仁・五十嵐祐 (2017). How am I popular really?: Egocentric orientation in social network memory task. 日本社会心理学会第58回大会(広島大学)
白木優馬・五十嵐祐 (2017). Do the boughs that bear most hang lowest?:The relationships of trait-level gratitude with self-reported prestige and dominance. 日本社会心理学会第58回大会(広島大学)
玉井颯一・五十嵐祐 (2017). 集団主義傾向と他者の態度が排斥の支持に及ぼす影響 日本心理学会第81回大会(久留米大学)
賞罰
- 平成29年度名古屋大学学術奨励賞 人文社会系(白木優馬) テーマ:感謝感情に基づく「恩送り」の社会的伝播:社会心理学的アプローチによる実験的検討 2017年6月19日
この記事へのリンク | 2018-3-26
SPSP2018で発表を行います
The 19th Annual Meeting of the Society for Personality and Social Psychology (SPSP2018) (Atlanta) で以下の発表を行います。
Tamai, R., & Igarashi, T. (2018).Odd Man Out for Everyone: Utilitarianism Legitimizes Ostracizing
Shiraki, Y., & Igarashi, T. (2018). Grasping Connections by Way of Appreciation: Gratitude and Accuracy of Social Network Perception
Furuhashi, K. & Igarashi, T. (2018). In What Group and Feeling, Can We Help Others?: Altruistic Behavior under Mortality Salience
この記事へのリンク | 2018-1-29
“Asian Journal of Social Psychology”への論文掲載が決定しました
"Asian Journal of Social Psychology"に、以下の論文が掲載されます。感謝感情の喚起がペイ・フォワードや恩送りといった第三者への利他行動を促進するプロセスに、関係性欲求の充足が介在することを明らかにしました。
Shiraki, Y., & Igarashi, T. (2018). “Paying it forward” via satisfying basic human need: Need for Relatedness satisfaction mediates gratitude and prosocial behavior. Asian Journal of Social Psychology.
People who receive kindness tend to feel gratitude and act in a prosocial manner toward third persons (i.e., “paying-it-forward”). Combining the separate evidence that (1) gratitude leads to the formation of strong psychological bonds from a beneficiary to a benefactor; and (2) people become more prosocial toward strangers when the Need for Relatedness (NFR) is satisfied, two online experiments were conducted to examine if NFR satisfaction mediates the association between gratitude and prosocial behavior toward third persons. After evoking gratitude by recalling past experiences (Study 1) or writing a letter to someone (Study 2), participants were asked to make a donation from their remuneration for the experiment to a charity organization. As predicted, emotion manipulation promoted donation via feelings of gratitude and satisfied NFR. Implications of the current model to integrate previous findings are discussed.
この記事へのリンク | 2017-12-4
ASNAC2017で発表を行います
2017年11月28日~29日にかけて開催されるThe 2nd Australian Social Network Analysis Conference (ASNAC 2017) (Sydney, Australia) で以下の発表を行います。
Oral Presentation
Igarashi, T, Kato, J, Shiraki, Y, Hirashima, T, & Tamai, R (2017). Chasing stars and confirming alliance: Two effective strategies for learning social network structure.
This study reports a novel technique that unveils the process for learning social network structure. In an online experiment, participants were asked to remember and recall the structure of a directed social network (i.e. a set of influence relationships among employees in a company). Participants were shown a list of names of nodes and asked to remember information about who (source) influences whom (target) in the network with a time limit. The information appeared on the display only when participants hovered the mouse pointer over a source node; in other words, participants needed to collect source-target information across all nodes in an efficient way. A social network stimulus was generated at each experimental session based on a random graph varying in three properties: size (5 to 20), density (.05 to .20), and the degree of reciprocity (0 to 1). Analysis of patterns of mouse tracking/fixation across nodes in a generalized linear mixed modeling (GLMM) framework revealed two fundamental strategies that significantly increased a recall rate of whole network structure. The first was a “chasing stars” strategy, or spending more time to remember active (more influential) nodes than inactive (less influential) odes. The second was a “confirming alliance” strategy, or searching pairs of nodes forming reciprocal relationships, and was notably efficient to improve the performance in the learning task of large social network structure. The current findings suggest that the exploration of information-searching processes for social network learning has potential to understand the nature of network schema/bias.
この記事へのリンク | 2017-11-27